迅速がん診断支援装置の臨床応用

医学部 解剖学講座 主任教授 TAKEDA, Sén

SDGs 目標 3: すべての人に健康と福祉を

医療

板橋キャンパス

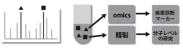
URL: https://researchmap.jp/drmedsta

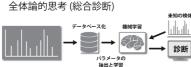
-ワード:膵臓癌、質量分析、機械学習、診断、医療機器

研究の概要

検査医学の現場で重要な要素として、迅速性、簡便性、客観性が挙げられると思います。様々な検査 法はこれらの要求を満たすべく進化してきました。質量分析法は物質を同定しマーカー探索を行うこと

においては極めて有用な分析法ですが(図①要素還元主義的思考)、検体の処理が煩雑であったり、機器 の操作が面倒であったりと医療の現場には馴染みにくい方法論でした。


ところが微細な針を使用してその先端に付着した検体をほぼそのまま分析可能な方法論があります。 これは探針エレクトロスプレーイオン化質量分析法 (PESI-MS) と呼ばれる方法論ですが、極めて微量 (20 µL 程度)の組織片、若しくは体液をほとんどそのままイオン化し、マススペクトルを得ることがで きます(文献[1])。もう一つの特徴は機械学習を併用してスペクトルデータを悉皆的に利用してデータ ベースを作成し診断に役立てているところにあります(図①全体論的思考)。島津製作所と共同開発した この装置(図②)を用いて、これまで国内外と臨床共同研究を展開してきました。


例えば 2020 年に英 Leicester 大学、国立台灣大学と展開した研究では Stage I.II の膵臓癌を血液検体 から感度 92.1%、特異度 97.8% という好成績で診断しています (文献 [2])。また乳癌 (文献 [3])、肝 臓癌(文献「4])などでも好成績を上げており、肝臓癌を対象とした多施設共同治験も主導しました。

この診断支援装置を臨床現場に実装することを目標に現在は主に膵臓癌での研究を進めています。

① データ利用の考え方

要素還元主義的思考 (腫瘍マーカー)

② 探針エレクトロスプレーイオン化質量分析装置

実学へのつながり・産業界へのアピールポイントなど

2019 ~ 2021 年にかけて AMED プロジェクト「肝臓癌の術後生存率を高め、医療費低減を可能とする人工 知能・質量分析診断支援装置の治験 | を本学を含む8つの大学病院、ハイボリュームセンターで治験調整医師 として主導しました。現在、島津製作所、東京大学と膵臓癌を対象とした新たな共同研究を実施しています。

知的財産・論文・学会発表など

- [1] Takeda S, Yoshimura K, Tanihata H. J. Vis. Exp. 156: doi:10.3791/59942. 2020
- [2] Chung W, Correa E, Yoshimura K et al. Am. J. Trans. Res. 12:171-9. 2020.
- [3] Iwano T, Yoshimura K, Inoue S et al. Br.J.Surg. 107:632-5. 2020.
- [4] Giordano S, Takeda S, Donadon M et al. Liver Int. 40:3117-24. 2020.
- [5] Kiritani, S, (中略), Takeda S, et al. Ann. Surg. Oncol: 30: 3150-3157. 2023.
- 邦文の分かりやすい総説を帝京医学雑誌 (45: 241-258. 2022) に書きました。図①、②はそこからの転載です。